Deriving the Poisson Distribution
from the Binomial Distribution
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At first glance, the binomial distribution and the Poisson distribution
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seem unrelated. But a closer look reveals a pretty interesting
relationship.
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Define a number

A=np

Let this be the rate of successes per day. It's equal to np. That’s the num-
ber of trials n—however many there are—times the chance of success p
for each of those trials.

Think of it like this: if the chance of success is p and we run n trials per
day, we'll observe np successes per day on average. That’s our observed
success rate lambda.



As mentioned above, let’s define lambda as follows:

A =np



Solving for p, we get:

A
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What we’re going to do here is substitute this expression for p into the
binomial distribution above, and take the limit as n goes to infinity, and
try to come up with something useful. That is,
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Pulling out the constants
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and splitting the term on the right that’s to the power of (n-k) into a term

to the power of n and one to the power of -k, we get
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Now let’s take the limit of this right-hand side one term at a time. We'll
do this in three steps. The first step is to find the limit of
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In the numerator, we can expand n! into n terms of (n) (n-1)(n-2)...(1).

And in the denominator, we can expand (n-k) into n-k terms of (n-k) (n-
k-1)(n-k-2)...(1). That is,
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In the numerator, we can expand n! into n terms of (n) (n-1)(n-2)...(1).

And in the denominator, we can expand (n-k) into n-k terms of (n-k) (n-
k-1)(n-k-2)...(1). That is,
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Written this way, it's clear that many of terms on the top and bottom can-
cel out. The (n-k)(n-k-1)...(1) terms cancel from both the numerator
and denominator, leaving the following:
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Since we canceled out n-k terms, the numerator here is left with k terms,
from n to n-k+1. So this has k terms in the numerator, and k terms in the
denominator since n is to the power of k.




Expanding out the numerator and denominator we can rewrite this as:
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This has k terms. Clearly, every one of these k terms approaches 1 as n

approaches infinity. So we know this portion of the problem just simpli-
fies to one. So we're done with the first step.




The second step is to find the limit of the term in the middle of our equa-
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tion, which is



Hat Check Problem

In a restaurant n hats are checked and they are hopelessly scram-
bled; what is the probability that no one gets his own hat back?

Find the probability that a random permutation contains at least
one fixed point.

hitps://math.dartmouth.edu/archive/mé0s06/public_html/Lecture8.pdf



e If A; is the event that the ith element a; remains fixed under this
map, then
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o If we fix a particular pair (ai,a;), then

1
n(n—1)

P(A,-_ﬂAj) -
e The number of terms of the form P(A;() 4,) is ( g )
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e For any three events A, Ao, A3
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and the number of such terms is

(1) - o= Din =2
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e Hence
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